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Absence of magnetohydrodynamic activity in the voltage-driven sheet pinch
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We have numerically studied the bifurcation properties of a sheet pinch with impenetrable stress-free
boundaries. An incompressible, electrically conducting fluid with spatially and temporally uniform kinematic
viscosity and magnetic diffusivity is confined between planeg &0 and 1. Periodic boundary conditions are
assumed in the, and x; directions and the magnetofluid is driven by an electric field inxhairection,
prescribed on the boundary planes. There is a stationary basic state with the fluid at rest and a uniform current
J=(0,0,J3). Surprisingly, this basic state proves to be stable and apparently to be the only time-asymptotic
state, no matter how strong the applied electric field and irrespective of the other control parameters of the
system, namely, the magnetic Prandtl number, the spatial pdrioasdL 5 in thex, andxs directions, and the
mean values8, andB; of the magnetic-field components in these directi¢84.063-651%96)10509-7

PACS numbes): 52.30—q, 47.65+a, 47.20.Ky, 95.30.Qd

[. INTRODUCTION states[11-14, but also relaxations from broadband-noise
initial conditions to certain quasiequilibrium states were
One of the basic configurations in magnetohydrodynamicstudied[15,16.
(MHD) is the pinch, namely, an electrically conducting fluid  Besides linear stability analysis and numerical simulation,
confined by the action of an electric current passing througla useful tool for gaining insight into the global solution
it. Gradients of thermal pressure arising in the confinemenstructure of a dynamical system is provided by bifurcation
region, notably a sheet or a cylinder or torus, are balanced banalysis. The main objective of a bifurcation analysis is the
the Lorentz force. For instance, plasma confinement in tordetermination of all attractors, i.e., of the set of possible
oidal devices for controlled thermonuclear fusion, such asime-asymptotic states for a given set of external system pa-
the tokamak, is based on the principle of the pinch. rameters. It is then imperative that dissipati@hmic and
Static pinch configurations are subject to various instabili-viscous losses are compensated for by some kind of perma-
ties, which have been studied extensivgly?]. Of special nent external forcing: otherwise the only time-asymptotic
interest here are the tearing modes, which belong to the classate is the trivial one with the fluid at rest and no magnetic
of the finite-resistivity instabilitie§3,4]. By destroying mag- field. In many numerical MHD simulations such an external
netic surfaces, they can shorten the confinement time of fuforcing, which may be imposed in the form of an explicit
sion plasmas. Tearing modes are also thought to play a rokexternal force or via appropriate boundary conditions, is ab-
for the explosive release of magnetic energy in space angent, so that altogether relaxations towards the trivial state
astrophysical plasmas, e.g., substorms in the terrestrial magre studied.
netosphere and solar flares. Furthermore, in a bifurcation analysis the equilibrium
Pinch configurations may be maintained by external volt-states have to be really stationary. By contrast, it is common
ages. Alternatively, pinchlikelynamicstructures may come to apply linear stability analysis, in particular tearing mode
about in a variety of circumstances, for instance, by meanalysis, to approximate equilibria, namely, to states in
chanically forcing together two volumes of magnetofluid which the fluid is at rest but the magnetic field diffuses away.
containing oppositely directed magnetic fields. This is the In general, the set of the attractors and the changes of its
basic scenario for one of the two main directions of reconcomposition and of the character of single attracttine bi-
nection theorywhere “reconnection” is used as a synonym furcationg can, if at all, only be explored by numerical
for the fast conversion of magnetic energy into kinetic andmeans. Under certain conditions, however, center manifold
thermal energies, in a process for which the the violation otheory[17—-19 can be used to obtain a low-dimensional sys-
the frozen-in-field condition of ideal MHD is essenjial tem of amplitude equations, valid close to a bifurcation point
[5-9]. The other main direction has concentrated on the evoand asymptotically in time. Graug20], Chen and Morrison
lution of resistive instabilities. A review of work along the [21], and Wessen22] used center manifold reduction to
lines of both approaches may be found in the monograph aftudy the time-asymptotic states of tearing mode evolution.
Biskamp[10]. Related preceding studies are due to Maschke and Saramito
In addition to analyzing the linear stability of specified [23,24].
equilibria, pinch configurations have been studied by nu- Most relevant for the present paper is recent work by
merically simulating the full nonlinear MHD equations. In Shan, Montgomery, and Ch¢a5-29, who studied numeri-
general, the simulations were started from near-equilibriuntally the bifurcation properties of an incompressible voltage-
driven cylindrical pinch with circular cross section, periodic
in the axial direction. For increasing an externally applied
"Electronic address: seehafer@agnld.uni-potsdam.de axial electric field, which can be prescribed on the boundary,
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transitions were observed from static equilibria to stationary v

states with flow, characterized by paired helical vortices and Pmn=—. (7)
helical distortions of the electric currefiivhich is axially
directed in the quiescent statéf the driving electric field is  The transformations for the electric fiell and the electric
raised further, the helical Stationary states in turn lose Stabilcurrent density] (: V X B//"LO in dimensional units corre-
ity and eventually turbulent states are observed. Such a beponding to the above normalizations, are

havior is found for spatially uniformh25] as well as nonuni-

form [26,27] electrical conductivity. 2

In the present paper we report on a bifurcation study of an E—>E/ %\/ﬁ J—>J/ L_772 \V Mi 8
incompressible sheet pinch with spatially uniform electrical 0
conductivity, driven by an electric field prescribed on theand the nondimensional Ohm law reads
boundary. Somewhat surprisingly, and in contrast to the be-
havior of the cylindrical pinch, a static basic state with uni- J=E+uvXB. 9
form current density proves to remain stable and apparently
to be the only time-asymptotic state, no matter how strongn

the driving electric field and irrespective of the values ofagnetofiuid in the slab-0x, <1 (that is, lengths are nor-
other system parameters. malized to the thickness of the s)alin thex, andx; direc-

In Sec. II, after introducing the governing equations andions periodic boundary conditions, with spatial peridds

their normalization, we explain system geometry, boundanndLs, are assumed. _ _

conditions, and forcing by the external electric field. Then, in _In order to compensate for viscous and Ohmic losses and
Sec. Ill we describe our numerical method and the calculathus to admit nontrivial time-asymptotic states, there must be
tions and present the result. Section 1V, finally, contains £ N€t energy input through the boundary plangs-0,

brief conclusion. x;=1. In the present paper we consider the case that only
electromagnetic energy, in the form of a Poynting flux, can
penetrate the boundary. In particular, we assume that there is
no mass flow through the boundary, i.e.,

We use Cartesian coordinategx,,X3 and consider our

Il. BASIC EQUATIONS, SYSTEM GEOMETRY,
AND FORCING

We start from the equations for a nonrelativistic, incom- v;=0 atx;=0,1. (10
pressible, electrically conducting fluid with constant material

properties(cf., e.g.,[30]), With respect to the tangential velocity components, stress-

free boundary conditions are used,

Jdv 1
_ . = 2y — — v dv
p &t—i-(v V)v) pvVo—Vp+ MO(VXB)XB, (1) W2 _ s _ at x;=0.1. (11)
Xy Iy
E:nszJFVX(vXB), 2) The syst_em is forged _by applying an electric field of
gt strengthE* in the x5 direction. Of course, E} can be pre-
scribed only on the boundary, while in the interior of the
V.v=0, V.B=0, (3 volume considered it is determined by the governing equa-

tions. We further assume that there is no magnetic flux

whereuv is the fluid velocity,B the magnetic inductiory the through the boundary

mass densityp the thermal pressure,the kinematic viscos-

ity, uo the magnetic permeability in a vacuum, anpdthe B,=0 atx;=0,1. (12)
magnetic diffusivity[ 7= (ue0) "1, o denoting the electrical

conductivityl. No externally applied force appears in Efj). ~ Conditions(10) and (12) imply that the tangential compo-
Transforming to nondimensional quantities according to  nents ofv X B on the boundary planes vanish, so that accord-

ing to Eq.(9)
L2 7

X=Xl =t ) v fop J,=0, Jz=E* atx;=0,1. (13)

2 The boundary conditions for the tangential components of
p—p p_LZ_ B—>B/§ [op, (4) B then become
By, . B3

Egs.(1) and(2) become (9_><1=E , (9—)(1=O at x;,=0,1. (14
’9_": —(v-V)v+ P, V2u—Vp+(VXB)XB, (5) A fgyv remarks concerning the. ;uitability and phy_sical re-
at alizability of our boundary conditions seem to be in order

(needless to say, we are considering a strongly idealized
mode). If there are rigid walls ak;=0 andx;=1, no-slip
boundary conditions on the velocitw€0) are of course
more appropriate than stress-free ones. Stress-free bound-
whereP,, is the magnetic Prandtl number aries are commonly assumed in order to circumvent the for-

oB
E=V28+VX(vXB), (6)
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mation of viscous boundary layefand thus to avoid the Our boundary conditions differ from those utilized by
need to resolve small spatial scalddow the main result of Shan, Montgomery, and Chd@5-29. Their condition on
the present study will be the stability of a quiescent basighe vorticity (the vanishing of its normal compongng im-
state. In this respect, stress-free boundaries are more genepéied by, but does not imply, no-slip boundary conditions; so
than rigid walls since the latter, by impeding fluid motions, this condition seems to be intermediate between stress-free
are stabilizing. On the other hand, there are physical situsdnd no-slip conditions. The vanishing of the normal compo-
tions to which stress-free boundary conditions are actuallj’nts of magnetic field and electric current density required
well suited, notably in astrophysics. For instance, plasm&y Shanet al. still permits them to impose @mear) tangen-
loops and prominences in the solar corona are surrounded Wll electric field at the boundary. So the driving mechanism
a very tenuous plasma exerting practically no mechanicdf the same as in our case. We have preferred to assume
stresses on theifof course, in more realistic models also the conducting boundaries, which allow currents to flow normal
deformation of free surfaces should be taken into acoount to the boundary. Butd; | will be small if the conducting wall

Still more delicate than the mechanical are the electroiS thin and, say, separates the fluid from a vacuum or an
magnetic boundary conditiongf. the discussion in Ref. msulatmg dielectric; then the two kinds of bounda_lry condi-
[31]). The vanishing of the normal component of the mag_nons shou_ld be_equally ap_propnate. It seems u_n_llkely to us
netic field on the boundary plangégq. (12)] is most easily that the slight differences in the boundary conditions play a
ensured by placing perfectly conducting rigid walls atrole for the observed fundamental difference between our
x,=0 andx,;=1. In this case, however, also the tangential®Sults and those of Shan, Montgomery, and Of2&-29.
component of the electric field has to vanish thése that There exists, up to a constant magnetic field, a unique
there is no Poynting flux through the boundariy toroidal statlonar_y stz_ite with the fIU|_d at rest: For this case Efk.
pinch devices in the laboratory, gaps in fiméghly conduct- @nd(6) simplify to the equations
ing) shell permit electric fieldgas well as externally gener- _
ated magnetic field¢o penetrate into the plasma, a situation ~Vp+(VXB)xB=0, (19
that needs to be idealized to allow mathematical treatment.
Shan, Montgomery, and Chd@25-29, who use boundary

conditions slightly different from ours, namely, vanishing of which the last one, in connection with the boundary con-
normal components of velocity, vorticity¥(X v), magnetic ditions agiven bv Eas '12 and(14). imolies
field, and electric current density, idealize the boundary by a g y Eas(12) (14), imp

perfectly conducting wall coated inside with a thin layer of B=(0,E*X;+C,,C3), (17)
insulating dielectric. Our boundary conditions can be ap-

proximately realized if the wall is simply finitely conducting with constantsC, and C5. Thus the static equilibrium field
(and uncoated Provided the homogeneous tangential elec-ge, can be written as

tric field (E,=0, E;=E*; E; is not presribedl can somehow

be maintained in the wall, then the normal component of the B®=(0,E*x;,—E*/2+B,,B3), (18)
magnetic field is independent of time[since

9By /dt=—(JE3/dx;— JE,/9X3) ], so that one merely has to where overbars denote spatial averages over the periodicity
ensure that it vanishes initially. The main difficulty, then, is volume, 0<x;<1, 0<x,<L,, and 0<x3<Lj. The equilib-

to maintain the electric field at the boundary. In the laborarium current is uniform and in the; direction,

tory the external electric field is usually provided induc-

tively, which is possible only for a limited time. This time Jé=V X B®=(0,0,E*), (19

has to be long enough to allow the fluid or plasma to relax to

its time-asymptotic state, in which we are primarily inter- and there is a Lorentz force in thg direction,

ested. Alternatively, since the two infinite plane walls have

to be finite in reality, voltage drops could be directly applied Jex B®=(—B3E*,0,0. (20)
between opposite edges; also the use of an array of thin

electrodes held on potential values increasing linearly witfEquation(15) is satisfied with
X3 is conceivable. The imposed tangential electric field leads

V2B=0, (16)

e2
to a tangential current in the wall, which in turn generates a p=pe=— B~ (21)
magnetic field whose component normal to the wall van- 2
ishes.

Finally, the magnetic field in the fluid may contain a dc  Obviously we could allow for a mean flow
component, namely, a homogeneous field parallel to th&°=(0v2,v3) in the equilibrium statey; has to vanish as a
boundaries. For our boundary conditions, this dc componeronsequence of the boundary conditions in conjunction with
is independent of timécf. Sec. Ill and the Appendjxand the incompressibility Egs. (15-(21) would remain valid;
thus a relic of the formation phase of the pinch. If a certainmerely an electric field componeft = — (v°®x Bf); would
dc field is desired, the formation process has to be manage&ppear. But in a coordinate system comoving with the mean
such as to generate it. For instance, applying first at one dfow, we would again observe our static equilibrium.

the two boundaries a tangential electric field in #3edirec- We shall use the decomposition

tion and then at both boundaries the permanent one in the 1

X5 direction will result in the presence of a dc magnetic field

ir?thexg direction P ° (VXB)XB:(B'V)B_EVBZ (22
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and write

P=p+ %BZ. (23
Furthermore, the notations
b=B-B® (24)
and
j=J—E* (25

will be used.v and b will be our dynamical variables, for
which the complete boundary conditions read

191}2 (903
U1=—_—— =

gb, dbg
COXy X

1:ﬁX1_(3’_X1:0 at x;,=0,1.
(26)

The total energy flowS into the periodicity volume is
given by

L, (Lg
S:fo fo [(EXB)1|X1:0_(EXB)1|xl:1]dX2dX3
Ly (Lg
:E*J' f [Bo(X1=1)—By(x;=0)]dx,dXg
0 Jo

L L
—E* fo ’ i *[by(xy=1) — by(x;=0)]dXpdXg+ E* 2L ,L 5.

(27)
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V1= Ek v 14SIN(Ky X1 ) exp{i (KoXo+ KaXa)},

Vo= Ek v 2k COg Ky X1) expli (KoXo+ KaXa)},

U3 Ek: v 3kCOg Ky Xq1) expli (KoXo+ KaX3)},
b,= Ek: byysin(kyxy)expli (koXo+KsXa)},

b,

Ek bokcogkyxq)expli(Koxp+KsaXs)},

b3: Zk b3kCOS( klxl)exp{i (k2X2+ k3X3)} . (28)

Herek=(kq,k,,ks) with
k,=0,7,27,3m, ...,

" _0_277 _2277 —3
2_ ,+L_2,+ L_2,+ E—

2 2
k3=0,IL—,12—,13

; L (29

In Fourier space Egg5) and(6) take the form
= — (- Vo)t K Py— Prk?v g+ (B- VBy)y,
vok=—(0- Vu2)—ikoP— Prk?v i+ (B- VBy)y,
vak=—(v- Vvg)y—ik3Py— Prk?vgt+ (B- VBy)y,
by=[V X (0XB) ]y~ Kby,
boi=[ VX (0% B) L~ Kbz,

bgk=[V><(v>< B)Jak— kb . (30

In these equations the Fourier coefficiefg, (v-Vuvi)y,

The termE*2L,L just compensates for the Ohmic losses,(B- VB;),, and[V X (vX B) ], on the right-hand sides refer

given byféfnggﬂzdxldxzdx& in the static equilibrium.

IIl. NUMERICAL METHOD, CALCULATIONS,
AND RESULT

The boundary conditions given by E(6) can be satis-
fied by expanding; andb, in pure sine series angh, v,
b,, and b; in pure cosine series with respect xg; with

respect tox, and x; expansions into exponential functions

can be used:

to expansions similar to those in E@28), namely, of
v-Vuvy, B-VBy, and[V X (vXB)], in pure sine series and
of P, v-Vu,, v-Vus, B-VB,, B- VB3, [VX(vXB)],, and
[VX(vXB)]s in pure cosine series with respectxp (see
the Appendix. Note thatB (and not onlyb) appears on the
right-hand sides of the syste(80), which reflects the forc-
ing by the boundary electric field.
Equation(3) implies

klvlk+ik2U2k+ik3U3k:O, (31)

klblk+ik2b2k+ik3b3k: 0, (32)
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so thatvq, can be expressed in terms of, andvg, and  test for aliasing errorg32,33, we also used a dealiased ver-
b1y in terms ofb,, andbs, (there are no complications in the sion of the subprogram calculating the right-hand sides of the
casek; =0 sincev;, andb,, then vanish Furthermore, by system of ODEs. For the dealiasing the 2/3 rule was em-

using the time derivative of Eq31), ployed, namely, for each spatial direction one-third of the
) . o Fourier coefficientgthose with the largest wave numbgrs
Kyv 1k iKov 2+ ik3v 3 =0, (33 was set equal to zero before each transformation from Fou-

. L . i ) rier to real spacéwhere then the nonlinearities were calcu-
in conjunction with the first three equations of the systemiaieq). In this way possible aliasing errors can be removed,

(30), the pressure can be eliminated: One obtains but at the expense of a significantly harder truncation: in our
1 case the number of active modes was reduced to about one-
Pi=121ki[(v-Vv1)—(B-VBy)] third (8/27. In the simulations, differences between the
k simple and dealiased calculations were observable for

. E* =10, but these did not affect the time-asymptotic state.
Fika[ (v Vo2)i = (B- VB2)y] For the numerical calculation of the elements)(/)f §1e Jacobian
+ikg[ (v Vug)g—(B-VBg),]}. (34) matrix, on the other hand, we could use a linearized version

of the subprogram for the right-hand sidgs which, for
We have numerically studied the resulting system of or-example, the termy(- V)v was omitted. Sources of aliasing
dinary differential equationODES for the unknown func-  errors are solely the product terms. In our case these were not
tions v (1), vak(t), ba(t), andba,(t) by means of a pseu- completely removed by the linearization: the products of
dospectral metho@32,33. The nonlinear termgproducty  {Vv} and b with the equilibrium magnetic fiel®® survived

on the right-hand sides were calculated in real sffastead the linearization. However, the eigenvalues with the largest

of in Fourier spack This did not merely save computer time real parts, decisive for the stability, did not seem to be influ-

but really made feasible the calculations. The right-hand sidenced by aliasing.

of the first equation of the syste(80), for instance, has to be In all simulations, independent of the initial conditions

expanded into a pure sine series with respeat tdidowever, and of the values of the parameters, asymptotically in time

if v, is given in the form of such a series anglandv; are  the static equilibriumv=Db=0 was approached. This con-
correspondingly given in the form of pure cosine series, therfirms the stability of the basic state. Furthermore, it indicates
by directly calculating in Fourier space; Vv, becomes the that coexisting attractors not bifurcating from the basic state
sum of different products of sine and cosine functiGmkich ~ do not exist.

have to be expanded into sine seyiekhese difficulties are

circumvented by Fourier transforming after having calcu-

lated the products in real spaé®r further details see the V. CONCLUSION

Appendix. In a voltage-driven incompressible sheet pinch with spa-

B ltaﬁzg e:fe”ﬁlnzz Zhn%ﬁﬂttgf:iﬂgf ipr)lztiAal me?%?;; \?\Iﬁﬁ tially and temporally uniform kinematic viscosity and mag-
2 3 P ' PP netic diffusivity and with impenetrable stress-free bound-

out loss of generality we have restricted ourselves to the case: , : : : ;
— . o : e aries, the quiescent basic state with uniform current density
of v,=v3=0 (that is, of vanishing Fourier coefficients,

and ) for, as noted in Sec. II, the mean flow can be re_is absolutely stable. Furthermore, it seems to be the only
v3o) T . C —— "“attractor of the system, though this cannot be stated with the
moved by a Galilean transformation. The mean valBgs

andBg;, on the other hand, have been treated as paramete%ame confidence. We suppose the result obtained to be
8 e == . X lly valid under rigid-wall ndar nditions for th
Keeping fixedP,, L,, L3, B,, and B3 and increasing qually valid under rigid-wall boundary conditions for the

. i . velocity.

E*, we have tf"?‘ced. the static eqwhbngm sollut|on. _In each Theycomplete absence of magnetohydrodynamic activity
step of the tracing, in ordgr to det_ect bifurcation points, thqn the sheet pinch contrasts with the rich activity observed in
eigenvalues of the Jacobian matrix of our system of ODE orresponding numerical studies of the cylindrical pinch
f25]. It seems unlikely to us that this results from the slight
difference between the boundary conditions utilized in both
studies. The situation is reminiscent of that for the hydrody-
namic Couette flow34—364. Namely, for the plane Couette
Mfow, the flow between infinite parallel planes with one mov-
ing boundary, the basic state with a linear velocity profile is
stable, while in the rotating Couette flow, the flow between
it concentric cylinders with the inner cylinder rotating, various
1000, and forB,, finally, the values 0 and 10. In each trac- g rcations are observed. As a next step, we plan to study

H * H 6
ing, E* was increased up to a value of°10 , the bifurcation properties of a sheet pinch with spatially non-
Because of the large amount of computer main storaggnitorm magnetic diffusivity.

needed for the Jacobian matrix, the eigenvalue calculations
were restricted to a resolution of 3@rid points in real
space. But we have alsimulatedthe system for randomly
chosen initial conditions. In the simulations, we could use a
resolution of 64 32X 32 grid points, with the higher resolu- We wish to thank David Montgomery, who has followed
tion in the direction of the equilibrium-field gradient,(). To  this study with interest and has made helpful remarks.

real parts of the eigenvalues became positige at least
zerg, no matter how stronge* and irrespective of the
choice of the otheffixed) parameters. Of course, we could
not systematically explore the space of these latter para
eters. But they were varied in a broad ranBg,, in particu-
lar, was varied between 0 and®1®orL, andL, the values
1, 4, and 10 were selected, fBg the values 0, 1, 10, and

ACKNOWLEDGMENT
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APPENDIX

The Fourier coefficientsP,, (v-Vuv;)k, (B-VB;j)y,
[V X (vX B) ]k on the right-hand sides of the syst¢g&0) are
defined by the expansions

P= 2k Pcog kyX;) expli (KoXp+ KsX3)},
v~Vv1=§k: (v-Vou)sin(koxy)expli(kox, +Ksxs)},
v~sz=Ek (v- Vu,)cogkyxy)expfi(Koxo+ Kaxs)},
v-Vv3=§k: (v-Vugz)cogkixy)expli(Koxo+KsaXa)},
B‘VBFEK (B-VBy)sin(kyxq) expli (Koo +KaXg)l,
B-VBZ=§k‘, (B- VBy)cog kyxy)exp{i(koxp+Ksxs)},
B.V|33:2k (B- VB3)cogkix1)expli (KoXo+KsXs)},

Ri= Ek Ryksin(kyxq)exp{i (KXo +KsXs)},

Ry= Ek Rokcogkix1) expli(Koxz+KaXa)},

R3=2k Rakcog kyxp)expli (Koo +kaXg)},  (Al)
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whereR is an abbreviation folV X (v X B). For evaluating
the terms ¢-Vuv,) and B- VB,)y, it has been advantageous
to use the relations

0 J
v-Vui=—0vi+— +— :
U1 axlvl (9X2(0102) ¢9X3(v1v3)

0 J
v-Vu,=—0v5+— +— :
U2 ﬁxzvz (9)(1(0102) &X3(v2v3)

, 9
+_(9X (vivg)+ ——(vovg)  (A2)
1

v-Vvs—axsvs %,
and the analogous relations fd8-VB;. The products
vivj, andB;B; have been calculated in real space, Fourier
transformed, and differentiated in Fourier space. Similarly,
the termd V X (v X B) J; were calculated.

Equation (A2) shows that the spatial means of the
v- Vu; vanish (by virtue of the boundary conditionsThe
same applies to thB- VB; . Thus, according to Eq30), the
spatial means o, andv; (namely, the Fourier coefficients
v, anduzg) are independent of time.

Correspondingly, the relations

J Jd
[VX(UXB)]zza_Xs(UzBa_%Bz)_(9_)(1(0152_0251),
J J
[VX(UXB)]aza_Xl(%Bl_UlBs)_0_)(2(0253_0352)

(A3)
show that the mean values ofVX(vxB)], and

[V X (vXB)]; vanish, so that according to EO0), b, and
b; are independent of time.
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