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We have numerically studied the bifurcation properties of a sheet pinch with impenetrable stress-free
boundaries. An incompressible, electrically conducting fluid with spatially and temporally uniform kinematic
viscosity and magnetic diffusivity is confined between planes atx150 and 1. Periodic boundary conditions are
assumed in thex2 and x3 directions and the magnetofluid is driven by an electric field in thex3 direction,
prescribed on the boundary planes. There is a stationary basic state with the fluid at rest and a uniform current
J5(0,0,J3). Surprisingly, this basic state proves to be stable and apparently to be the only time-asymptotic
state, no matter how strong the applied electric field and irrespective of the other control parameters of the
system, namely, the magnetic Prandtl number, the spatial periodsL2 andL3 in thex2 andx3 directions, and the
mean valuesB2 andB3 of the magnetic-field components in these directions.@S1063-651X~96!10509-2#

PACS number~s!: 52.30.2q, 47.65.1a, 47.20.Ky, 95.30.Qd

I. INTRODUCTION

One of the basic configurations in magnetohydrodynamics
~MHD! is the pinch, namely, an electrically conducting fluid
confined by the action of an electric current passing through
it. Gradients of thermal pressure arising in the confinement
region, notably a sheet or a cylinder or torus, are balanced by
the Lorentz force. For instance, plasma confinement in tor-
oidal devices for controlled thermonuclear fusion, such as
the tokamak, is based on the principle of the pinch.

Static pinch configurations are subject to various instabili-
ties, which have been studied extensively@1,2#. Of special
interest here are the tearing modes, which belong to the class
of the finite-resistivity instabilities@3,4#. By destroying mag-
netic surfaces, they can shorten the confinement time of fu-
sion plasmas. Tearing modes are also thought to play a role
for the explosive release of magnetic energy in space and
astrophysical plasmas, e.g., substorms in the terrestrial mag-
netosphere and solar flares.

Pinch configurations may be maintained by external volt-
ages. Alternatively, pinchlikedynamicstructures may come
about in a variety of circumstances, for instance, by me-
chanically forcing together two volumes of magnetofluid
containing oppositely directed magnetic fields. This is the
basic scenario for one of the two main directions of recon-
nection theory~where ‘‘reconnection’’ is used as a synonym
for the fast conversion of magnetic energy into kinetic and
thermal energies, in a process for which the the violation of
the frozen-in-field condition of ideal MHD is essential!
@5–9#. The other main direction has concentrated on the evo-
lution of resistive instabilities. A review of work along the
lines of both approaches may be found in the monograph of
Biskamp@10#.

In addition to analyzing the linear stability of specified
equilibria, pinch configurations have been studied by nu-
merically simulating the full nonlinear MHD equations. In
general, the simulations were started from near-equilibrium

states@11–14#, but also relaxations from broadband-noise
initial conditions to certain quasiequilibrium states were
studied@15,16#.

Besides linear stability analysis and numerical simulation,
a useful tool for gaining insight into the global solution
structure of a dynamical system is provided by bifurcation
analysis. The main objective of a bifurcation analysis is the
determination of all attractors, i.e., of the set of possible
time-asymptotic states for a given set of external system pa-
rameters. It is then imperative that dissipative~Ohmic and
viscous! losses are compensated for by some kind of perma-
nent external forcing: otherwise the only time-asymptotic
state is the trivial one with the fluid at rest and no magnetic
field. In many numerical MHD simulations such an external
forcing, which may be imposed in the form of an explicit
external force or via appropriate boundary conditions, is ab-
sent, so that altogether relaxations towards the trivial state
are studied.

Furthermore, in a bifurcation analysis the equilibrium
states have to be really stationary. By contrast, it is common
to apply linear stability analysis, in particular tearing mode
analysis, to approximate equilibria, namely, to states in
which the fluid is at rest but the magnetic field diffuses away.

In general, the set of the attractors and the changes of its
composition and of the character of single attractors~the bi-
furcations! can, if at all, only be explored by numerical
means. Under certain conditions, however, center manifold
theory@17–19# can be used to obtain a low-dimensional sys-
tem of amplitude equations, valid close to a bifurcation point
and asymptotically in time. Grauer@20#, Chen and Morrison
@21#, and Wessen@22# used center manifold reduction to
study the time-asymptotic states of tearing mode evolution.
Related preceding studies are due to Maschke and Saramito
@23,24#.

Most relevant for the present paper is recent work by
Shan, Montgomery, and Chen@25–29#, who studied numeri-
cally the bifurcation properties of an incompressible voltage-
driven cylindrical pinch with circular cross section, periodic
in the axial direction. For increasing an externally applied
axial electric field, which can be prescribed on the boundary,*Electronic address: seehafer@agnld.uni-potsdam.de
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transitions were observed from static equilibria to stationary
states with flow, characterized by paired helical vortices and
helical distortions of the electric current~which is axially
directed in the quiescent state!. If the driving electric field is
raised further, the helical stationary states in turn lose stabil-
ity and eventually turbulent states are observed. Such a be-
havior is found for spatially uniform@25# as well as nonuni-
form @26,27# electrical conductivity.

In the present paper we report on a bifurcation study of an
incompressible sheet pinch with spatially uniform electrical
conductivity, driven by an electric field prescribed on the
boundary. Somewhat surprisingly, and in contrast to the be-
havior of the cylindrical pinch, a static basic state with uni-
form current density proves to remain stable and apparently
to be the only time-asymptotic state, no matter how strong
the driving electric field and irrespective of the values of
other system parameters.

In Sec. II, after introducing the governing equations and
their normalization, we explain system geometry, boundary
conditions, and forcing by the external electric field. Then, in
Sec. III we describe our numerical method and the calcula-
tions and present the result. Section IV, finally, contains a
brief conclusion.

II. BASIC EQUATIONS, SYSTEM GEOMETRY,
AND FORCING

We start from the equations for a nonrelativistic, incom-
pressible, electrically conducting fluid with constant material
properties~cf., e.g.,@30#!,

rS ]v
]t

1~v•“ !vD5rn¹2v2“p1
1

m0
~“3B!3B, ~1!

]B

]t
5h¹2B1“3~v3B!, ~2!

“•v50, “•B50, ~3!

wherev is the fluid velocity,B the magnetic induction,r the
mass density,p the thermal pressure,n the kinematic viscos-
ity, m0 the magnetic permeability in a vacuum, andh the
magnetic diffusivity@h5(m0s)

21, s denoting the electrical
conductivity#. No externally applied force appears in Eq.~1!.
Transforming to nondimensional quantities according to

x→x/L, t→tY L2

h
, v→vY h

L
,

p→pY rh2

L2
, B→BY h

L
Am0r, ~4!

Eqs.~1! and ~2! become

]v
]t

52~v•“ !v1Pm¹2v2“p1~“3B!3B, ~5!

]B

]t
5¹2B1“3~v3B!, ~6!

wherePm is the magnetic Prandtl number

Pm5
n

h
. ~7!

The transformations for the electric fieldE and the electric
current densityJ (5“3B/m0 in dimensional units!, corre-
sponding to the above normalizations, are

E→EY h2

L2
Am0r, J→JY h

L2
A r

m0
~8!

and the nondimensional Ohm law reads

J5E1v3B. ~9!

We use Cartesian coordinatesx1,x2,x3 and consider our
magnetofluid in the slab 0,x1,1 ~that is, lengths are nor-
malized to the thickness of the slab!. In thex2 andx3 direc-
tions periodic boundary conditions, with spatial periodsL2
andL3, are assumed.

In order to compensate for viscous and Ohmic losses and
thus to admit nontrivial time-asymptotic states, there must be
a net energy input through the boundary planesx150,
x151. In the present paper we consider the case that only
electromagnetic energy, in the form of a Poynting flux, can
penetrate the boundary. In particular, we assume that there is
no mass flow through the boundary, i.e.,

v150 at x150,1. ~10!

With respect to the tangential velocity components, stress-
free boundary conditions are used,

]v2
]x1

5
]v3
]x1

50 at x150,1. ~11!

The system is forced by applying an electric field of
strengthE* in the x3 direction. Of course, {E} can be pre-
scribed only on the boundary, while in the interior of the
volume considered it is determined by the governing equa-
tions. We further assume that there is no magnetic flux
through the boundary,

B150 at x150,1. ~12!

Conditions~10! and ~12! imply that the tangential compo-
nents ofv3B on the boundary planes vanish, so that accord-
ing to Eq.~9!

J250, J35E* at x150,1. ~13!

The boundary conditions for the tangential components of
B then become

]B2

]x1
5E* ,

]B3

]x1
50 at x150,1. ~14!

A few remarks concerning the suitability and physical re-
alizability of our boundary conditions seem to be in order
~needless to say, we are considering a strongly idealized
model!. If there are rigid walls atx150 andx151, no-slip
boundary conditions on the velocity (v50) are of course
more appropriate than stress-free ones. Stress-free bound-
aries are commonly assumed in order to circumvent the for-
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mation of viscous boundary layers~and thus to avoid the
need to resolve small spatial scales!. Now the main result of
the present study will be the stability of a quiescent basic
state. In this respect, stress-free boundaries are more general
than rigid walls since the latter, by impeding fluid motions,
are stabilizing. On the other hand, there are physical situa-
tions to which stress-free boundary conditions are actually
well suited, notably in astrophysics. For instance, plasma
loops and prominences in the solar corona are surrounded by
a very tenuous plasma exerting practically no mechanical
stresses on them~of course, in more realistic models also the
deformation of free surfaces should be taken into account!.

Still more delicate than the mechanical are the electro-
magnetic boundary conditions~cf. the discussion in Ref.
@31#!. The vanishing of the normal component of the mag-
netic field on the boundary planes@Eq. ~12!# is most easily
ensured by placing perfectly conducting rigid walls at
x150 andx151. In this case, however, also the tangential
component of the electric field has to vanish there~so that
there is no Poynting flux through the boundary!. In toroidal
pinch devices in the laboratory, gaps in the~highly conduct-
ing! shell permit electric fields~as well as externally gener-
ated magnetic fields! to penetrate into the plasma, a situation
that needs to be idealized to allow mathematical treatment.
Shan, Montgomery, and Chen@25–29#, who use boundary
conditions slightly different from ours, namely, vanishing
normal components of velocity, vorticity (“3v), magnetic
field, and electric current density, idealize the boundary by a
perfectly conducting wall coated inside with a thin layer of
insulating dielectric. Our boundary conditions can be ap-
proximately realized if the wall is simply finitely conducting
~and uncoated!: Provided the homogeneous tangential elec-
tric field (E250,E35E* ; E1 is notpresribed! can somehow
be maintained in the wall, then the normal component of the
magnetic field is independent of time @since
]B1 /]t52(]E3 /]x22]E2 /]x3)#, so that one merely has to
ensure that it vanishes initially. The main difficulty, then, is
to maintain the electric field at the boundary. In the labora-
tory the external electric field is usually provided induc-
tively, which is possible only for a limited time. This time
has to be long enough to allow the fluid or plasma to relax to
its time-asymptotic state, in which we are primarily inter-
ested. Alternatively, since the two infinite plane walls have
to be finite in reality, voltage drops could be directly applied
between opposite edges; also the use of an array of thin
electrodes held on potential values increasing linearly with
x3 is conceivable. The imposed tangential electric field leads
to a tangential current in the wall, which in turn generates a
magnetic field whose component normal to the wall van-
ishes.

Finally, the magnetic field in the fluid may contain a dc
component, namely, a homogeneous field parallel to the
boundaries. For our boundary conditions, this dc component
is independent of time~cf. Sec. III and the Appendix! and
thus a relic of the formation phase of the pinch. If a certain
dc field is desired, the formation process has to be managed
such as to generate it. For instance, applying first at one of
the two boundaries a tangential electric field in thex2 direc-
tion and then at both boundaries the permanent one in the
x3 direction will result in the presence of a dc magnetic field
in the x3 direction.

Our boundary conditions differ from those utilized by
Shan, Montgomery, and Chen@25–29#. Their condition on
the vorticity ~the vanishing of its normal component! is im-
plied by, but does not imply, no-slip boundary conditions; so
this condition seems to be intermediate between stress-free
and no-slip conditions. The vanishing of the normal compo-
nents of magnetic field and electric current density required
by Shanet al. still permits them to impose a~mean! tangen-
tial electric field at the boundary. So the driving mechanism
is the same as in our case. We have preferred to assume
conducting boundaries, which allow currents to flow normal
to the boundary. ButuJ1u will be small if the conducting wall
is thin and, say, separates the fluid from a vacuum or an
insulating dielectric; then the two kinds of boundary condi-
tions should be equally appropriate. It seems unlikely to us
that the slight differences in the boundary conditions play a
role for the observed fundamental difference between our
results and those of Shan, Montgomery, and Chen@25–29#.

There exists, up to a constant magnetic field, a unique
stationary state with the fluid at rest: For this case Eqs.~5!
and ~6! simplify to the equations

2“p1~“3B!3B50, ~15!

¹2B50, ~16!

of which the last one, in connection with the boundary con-
ditions given by Eqs.~12! and ~14!, implies

B5~0,E* x11C2 ,C3!, ~17!

with constantsC2 andC3. Thus the static equilibrium field
Be, can be written as

Be5~0,E* x12E* /21B2,B3!, ~18!

where overbars denote spatial averages over the periodicity
volume, 0,x1,1, 0,x2,L2, and 0,x3,L3. The equilib-
rium current is uniform and in thex3 direction,

Je5“3Be5~0,0,E* !, ~19!

and there is a Lorentz force in thex1 direction,

Je3Be5~2B2
eE* ,0,0!. ~20!

Equation~15! is satisfied with

p5pe52
Be2

2
. ~21!

Obviously we could allow for a mean flow
ve5(0,v̄2,v̄3) in the equilibrium state (v̄1 has to vanish as a
consequence of the boundary conditions in conjunction with
the incompressibility!: Eqs. ~15!–~21! would remain valid;
merely an electric field componentE152(ve3Be)1 would
appear. But in a coordinate system comoving with the mean
flow, we would again observe our static equilibrium.

We shall use the decomposition

~“3B!3B5~B•“ !B2
1

2
“B2 ~22!
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and write

P5p1
1

2
B2. ~23!

Furthermore, the notations

b5B2Be ~24!

and

j5J2E* ~25!

will be used.v and b will be our dynamical variables, for
which the complete boundary conditions read

v15
]v2
]x1

5
]v3
]x1

5b15
]b2
]x1

5
]b3
]x1

50 at x150,1.

~26!

The total energy flowS into the periodicity volume is
given by

S5E
0

L2E
0

L3
@~E3B!1ux1502~E3B!1ux151#dx2dx3

5E* E
0

L2E
0

L3
@B2~x151!2B2~x150!#dx2dx3

5E* E
0

L2E
0

L3
@b2~x151!2b2~x150!#dx2dx31E* 2L2L3 .

~27!

The termE* 2L2L3 just compensates for the Ohmic losses,
given by*0

1*0
L2*0

L3J2dx1dx2dx3, in the static equilibrium.

III. NUMERICAL METHOD, CALCULATIONS,
AND RESULT

The boundary conditions given by Eq.~26! can be satis-
fied by expandingv1 andb1 in pure sine series andv2, v3,
b2, and b3 in pure cosine series with respect tox1; with
respect tox2 and x3 expansions into exponential functions
can be used:

v15(
k
v1ksin~k1x1!exp$ i ~k2x21k3x3!%,

v25(
k
v2kcos~k1x1!exp$ i ~k2x21k3x3!%,

v35(
k
v3kcos~k1x1!exp$ i ~k2x21k3x3!%,

b15(
k
b1ksin~k1x1!exp$ i ~k2x21k3x3!%,

b25(
k
b2kcos~k1x1!exp$ i ~k2x21k3x3!%,

b35(
k
b3kcos~k1x1!exp$ i ~k2x21k3x3!%. ~28!

Herek5(k1 ,k2 ,k3) with

k150,p,2p,3p, . . . ,

k250,7
2p

L2
,72

2p

L2
,73

2p

L2
, . . .

k350,7
2p

L3
,72

2p

L3
,73

2p

L3
, . . . . ~29!

In Fourier space Eqs.~5! and ~6! take the form

v̇1k52~v•“v1!k1k1Pk2Pmk
2v1k1~B•“B1!k ,

v̇2k52~v•“v2!k2 ik2Pk2Pmk
2v2k1~B•“B2!k ,

v̇3k52~v•“v3!k2 ik3Pk2Pmk
2v3k1~B•“B3!k ,

ḃ1k5@“3~v3B!#1k2k2b1k ,

ḃ2k5@“3~v3B!#2k2k2b2k ,

ḃ3k5@“3~v3B!#3k2k2b3k . ~30!

In these equations the Fourier coefficientsPk , (v•“v i)k ,
(B•“Bi)k , and@“3(v3B)# ik on the right-hand sides refer
to expansions similar to those in Eq.~28!, namely, of
v•“v1, B•“B1, and @“3(v3B)#1 in pure sine series and
of P, v•“v2, v•“v3, B•“B2, B•“B3, @“3(v3B)#2, and
@“3(v3B)#3 in pure cosine series with respect tox1 ~see
the Appendix!. Note thatB ~and not onlyb) appears on the
right-hand sides of the system~30!, which reflects the forc-
ing by the boundary electric field.

Equation~3! implies

k1v1k1 ik2v2k1 ik3v3k50, ~31!

k1b1k1 ik2b2k1 ik3b3k50, ~32!

2866 54N. SEEHAFER, E. ZIENICKE, AND F. FEUDEL



so thatv1k can be expressed in terms ofv2k and v3k and
b1k in terms ofb2k andb3k ~there are no complications in the
casek150 sincev1k andb1k then vanish!. Furthermore, by
using the time derivative of Eq.~31!,

k1v̇1k1 ik2v̇2k1 ik3v̇3k50, ~33!

in conjunction with the first three equations of the system
~30!, the pressure can be eliminated: One obtains

Pk5
1

k2
$k1@~v•“v1!k2~B•“B1!k#

1 ik2@~v•“v2!k2~B•“B2!k#

1 ik3@~v•“v3!k2~B•“B3!k#%. ~34!

We have numerically studied the resulting system of or-
dinary differential equations~ODEs! for the unknown func-
tions v2k(t), v3k(t), b2k(t), andb3k(t) by means of a pseu-
dospectral method@32,33#. The nonlinear terms~products!
on the right-hand sides were calculated in real space~instead
of in Fourier space!. This did not merely save computer time
but really made feasible the calculations. The right-hand side
of the first equation of the system~30!, for instance, has to be
expanded into a pure sine series with respect tox1. However,
if v1 is given in the form of such a series andv2 andv3 are
correspondingly given in the form of pure cosine series, then,
by directly calculating in Fourier space,v•“v1 becomes the
sum of different products of sine and cosine functions~which
have to be expanded into sine series!. These difficulties are
circumvented by Fourier transforming after having calcu-
lated the products in real space~for further details see the
Appendix!.

It can easily be shown that the spatial means ofv2, v3,
B2, andB3 are independent of time~cf. the Appendix!. With-
out loss of generality we have restricted ourselves to the case
of v̄25 v̄350 ~that is, of vanishing Fourier coefficientsv20
and v30) for, as noted in Sec. II, the mean flow can be re-
moved by a Galilean transformation. The mean valuesB2
andB3, on the other hand, have been treated as parameters.

Keeping fixedPm , L2, L3, B2, and B3 and increasing
E* , we have traced the static equilibrium solution. In each
step of the tracing, in order to detect bifurcation points, the
eigenvalues of the Jacobian matrix of our system of ODEs
were calculated. The surprising result was that none of the
real parts of the eigenvalues became positive~or at least
zero!, no matter how strongE* and irrespective of the
choice of the other~fixed! parameters. Of course, we could
not systematically explore the space of these latter param-
eters. But they were varied in a broad range.Pm , in particu-
lar, was varied between 0 and 106. ForL2 andL3 the values
1, 4, and 10 were selected, forB3 the values 0, 1, 10, and
1000, and forB2, finally, the values 0 and 10. In each trac-
ing, E* was increased up to a value of 106.

Because of the large amount of computer main storage
needed for the Jacobian matrix, the eigenvalue calculations
were restricted to a resolution of 163 grid points in real
space. But we have alsosimulatedthe system for randomly
chosen initial conditions. In the simulations, we could use a
resolution of 64332332 grid points, with the higher resolu-
tion in the direction of the equilibrium-field gradient (x1). To

test for aliasing errors@32,33#, we also used a dealiased ver-
sion of the subprogram calculating the right-hand sides of the
system of ODEs. For the dealiasing the 2/3 rule was em-
ployed, namely, for each spatial direction one-third of the
Fourier coefficients~those with the largest wave numbers!
was set equal to zero before each transformation from Fou-
rier to real space~where then the nonlinearities were calcu-
lated!. In this way possible aliasing errors can be removed,
but at the expense of a significantly harder truncation: in our
case the number of active modes was reduced to about one-
third ~8/27!. In the simulations, differences between the
simple and dealiased calculations were observable for
E**105, but these did not affect the time-asymptotic state.
For the numerical calculation of the elements of the Jacobian
matrix, on the other hand, we could use a linearized version
of the subprogram for the right-hand sides@in which, for
example, the term (v•“)v was omitted#. Sources of aliasing
errors are solely the product terms. In our case these were not
completely removed by the linearization: the products of
{ v} and b with the equilibrium magnetic fieldBe survived
the linearization. However, the eigenvalues with the largest
real parts, decisive for the stability, did not seem to be influ-
enced by aliasing.

In all simulations, independent of the initial conditions
and of the values of the parameters, asymptotically in time
the static equilibriumv5b50 was approached. This con-
firms the stability of the basic state. Furthermore, it indicates
that coexisting attractors not bifurcating from the basic state
do not exist.

IV. CONCLUSION

In a voltage-driven incompressible sheet pinch with spa-
tially and temporally uniform kinematic viscosity and mag-
netic diffusivity and with impenetrable stress-free bound-
aries, the quiescent basic state with uniform current density
is absolutely stable. Furthermore, it seems to be the only
attractor of the system, though this cannot be stated with the
same confidence. We suppose the result obtained to be
equally valid under rigid-wall boundary conditions for the
velocity.

The complete absence of magnetohydrodynamic activity
in the sheet pinch contrasts with the rich activity observed in
corresponding numerical studies of the cylindrical pinch
@25#. It seems unlikely to us that this results from the slight
difference between the boundary conditions utilized in both
studies. The situation is reminiscent of that for the hydrody-
namic Couette flow@34–36#. Namely, for the plane Couette
flow, the flow between infinite parallel planes with one mov-
ing boundary, the basic state with a linear velocity profile is
stable, while in the rotating Couette flow, the flow between
concentric cylinders with the inner cylinder rotating, various
bifurcations are observed. As a next step, we plan to study
the bifurcation properties of a sheet pinch with spatially non-
uniform magnetic diffusivity.
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APPENDIX

The Fourier coefficientsPk , (v•“v i)k , (B•“Bi)k ,
@“3(v3B)# ik on the right-hand sides of the system~30! are
defined by the expansions

P5(
k
Pkcos~k1x1!exp$ i ~k2x21k3x3!%,

v•“v15(
k

~v•“v1!ksin~k1x1!exp$ i ~k2x21k3x3!%,

v•“v25(
k

~v•“v2!kcos~k1x1!exp$ i ~k2x21k3x3!%,

v•“v35(
k

~v•“v3!kcos~k1x1!exp$ i ~k2x21k3x3!%,

B•“B15(
k

~B•“B1!ksin~k1x1!exp$ i ~k2x21k3x3!%,

B•“B25(
k

~B•“B2!kcos~k1x1!exp$ i ~k2x21k3x3!%,

B•“B35(
k

~B•“B3!kcos~k1x1!exp$ i ~k2x21k3x3!%,

R15(
k
R1ksin~k1x1!exp$ i ~k2x21k3x3!%,

R25(
k
R2kcos~k1x1!exp$ i ~k2x21k3x3!%,

R35(
k
R3kcos~k1x1!exp$ i ~k2x21k3x3!%, ~A1!

whereR is an abbreviation for“3(v3B). For evaluating
the terms (v•“v i)k and (B•“Bi)k , it has been advantageous
to use the relations

v•“v15
]

]x1
v1
21

]

]x2
~v1v2!1

]

]x3
~v1v3!,

v•“v25
]

]x2
v2
21

]

]x1
~v1v2!1

]

]x3
~v2v3!,

v•“v35
]

]x3
v3
21

]

]x1
~v1v3!1

]

]x2
~v2v3! ~A2!

and the analogous relations forB•“Bi . The products
v iv j , andBiBj have been calculated in real space, Fourier
transformed, and differentiated in Fourier space. Similarly,
the terms@“3(v3B)# ik were calculated.

Equation ~A2! shows that the spatial means of the
v•“v i vanish ~by virtue of the boundary conditions!. The
same applies to theB•“Bi . Thus, according to Eq.~30!, the
spatial means ofv2 andv3 ~namely, the Fourier coefficients
v20 andv30) are independent of time.

Correspondingly, the relations

@“3~v3B!#25
]

]x3
~v2B32v3B2!2

]

]x1
~v1B22v2B1!,

@“3~v3B!#35
]

]x1
~v3B12v1B3!2

]

]x2
~v2B32v3B2!

~A3!

show that the mean values of@“3(v3B)#2 and
@“3(v3B)#3 vanish, so that according to Eq.~30!, b2 and
b3 are independent of time.
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